博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
同一个闭区间上有界变差函数的和与积都是有界变差函数
阅读量:6277 次
发布时间:2019-06-22

本文共 1177 字,大约阅读时间需要 3 分钟。

设$f,g$是$[a,b]$上的[有界变差函数],则$f+g$也是$[a,b]$上的有界变差函数.

 

 

证明:设$P=\{x_0,\cdots,x_n\}$是对$[a,b]$的任意分割.由于$f$是$[a,b]$上的有界变差函数,因此

$$\sum_{i=0}^{n-1}|f(x_{i+1})-f(x_i)|<M_1$$
$$\sum_{i=0}^{n-1}|g(x_{i+1})-g(x_i)|<M_2$$
其中,$M_1$和$M_2$是固定的常数.因此
$$\sum_{i=0}^{n-1}|(f(x_{i+1})+g(x_{i+1}))-(f(x_i)+g(x_i))|=\sum_{i=0}^{n-1}|(f(x_{i+1})-f(x_i))+(g(x_{i+1})-g(x_i))|\leq \sum_{i=0}^{n-1}|f(x_{i+1}-f(x_i)|+\sum_{i=0}^{n-1}|g(x_{i+1}-g(x_i)|<M_1+M_2$$
可见,$f+g$是$[a,b]$上的有界变差函数.

 

 

 

设$f$和$g$都是$[a,b]$上的有界变差函数,则$f(x)g(x)$在$[a,b]$上有界变差函数.

证明:我先证明

若$f$是$[a,b]$上的有界变差函数,则$f^2$是$[a,b]$上的有界变差函数.
证明:设$P=\{x_0,\cdots,x_n\}$是对于$[a,b]$的任意分割,则
$$\sum_{i=0}^{n-1}|f^2(x_{i+1})-f^2(x_i)|=\sum_{i=0}^{n-1}|f(x_{i+1})+f(x_i)||f(x_{i+1})-f(x_i)|$$
根据,$f$是$[a,b]$上的有界函数.因此$\forall x\in [a,b]$,$|f(x)|\leq K$,其中$K$是给定正实数.因此
$$\sum_{i=0}^{n-1}|f^2(x_{i+1})-f^2(x_i)|=\sum_{i=0}^{n-1}|f(x_{i+1})+f(x_i)||f(x_{i+1})-f(x_i)|\leq \sum_{i=0}^{n-1}(|f(x_{i+1})|+|f(x_i)|)|f(x_{i+1})-f(x_i)|\leq \sum_{i=0}^{n-1}2K|f(x_{i+1}-f(x_i)|\leq 2KM$$
其中$M$是给定正实数.可见,$f^2$是$[a,b]$上的有界变差函数.
由于$fg=\frac{(f+g)^2-(f-g)^2}{4}$,且根据同一个闭区间上两个有界变差函数的和仍然是有界变差函数,可得$fg$是有界变差函数.

转载于:https://www.cnblogs.com/yeluqing/archive/2013/02/09/3827477.html

你可能感兴趣的文章
翻译 | 摆脱浏览器限制的JavaScript
查看>>
闲扯下午引爆乌云社区“盗窃”乌云币事件
查看>>
02@在类的头文件中尽量少引入其他头文件
查看>>
JAVA IO BIO NIO AIO
查看>>
input checkbox 复选框大小修改
查看>>
网吧维护工具
查看>>
BOOT.INI文件参数
查看>>
vmstat详解
查看>>
新年第一镖
查看>>
unbtu使用笔记
查看>>
OEA 中 WPF 树型表格虚拟化设计方案
查看>>
Android程序开发初级教程(一) 开始 Hello Android
查看>>
使用Gradle打RPM包
查看>>
“我意识到”的意义
查看>>
淘宝天猫上新辅助工具-新品填表
查看>>
再学 GDI+[43]: 文本输出 - 获取已安装的字体列表
查看>>
nginx反向代理
查看>>
操作系统真实的虚拟内存是什么样的(一)
查看>>
hadoop、hbase、zookeeper集群搭建
查看>>
python中一切皆对象------类的基础(五)
查看>>